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It is shown that in density functional theory (DFT), Koopmans’ theorem for a large molecular system can be
stated as follows: The ionization energy of the system equals the negative of the highest occupied molecular
orbital (HOMO) energy plus the Coulomb electrostatic energy of removing an electron from the system, or
equivalently, the ionization energy of &frelectron system is the negative of the arithmetic average of the
HOMO energy of this system and the lowest unoccupied molecular orbital (LUMO) energy oRthe (
1)-electron system. Relations between this DFT Koopmans’ theorem and its existing counterparts in the literature
are discussed. Some of the previous results are generalized and some are simplified. DFT calculation results
of a fullerene molecule, a finite single-walled carbon nanotube and a finite boron nitride nanotube are presented,
indicating that this Koopmans’ theorem approximately holds, even if the orbital relaxation is taken into
consideration.

In the Hartree-Fock (HF) method, Koopmans' theorém  within local density approximation (LDA) is
provides a convenient way to estimate the ionization energy of

a molecular system: The energy needed to remove an electron 1 (TP (F)? o
5 If dr dr’ +

from a certain si_ngle-particle state approximatt_ely equals the I(N) = —ey + Arre,|T — ']
negative of the eigen-energy of that state, provided the corre-

sponding orbital is a canonical one and there is no state =
relaxation of the remaining electrons. Because electronic f‘le(r)
structure calculations based on KehBham (KS) density
functional theory (DFT32 are more efficient and accurate, the
DFT version of Koopmans' theorem naturally becomes an
interesting topic. Here one problem is that the single-electron
states in DFT and their energies are related to a fictitious
noninteracting electron system, hence the KS orbitals and levels
are sometimes believed to lack physical implications. Neverthe-
less, Janakproved that in DFTOE/on; = ¢;, whereE is the

total energy corresponding to the arbitrary (not restricted to
integers) occupation of KS orbitaly; with energye;. Therefore

e p(7) dT] -
dp
whereyn(r) is the Nth KS orbital, anduy(po(r)) is the LDA
exchange-correlation potential. On the other hand, there are
conclusions that eq 2 exactly holds for finite systémdhe
DFT Koopmans' theorem thus has been an issue open to
discussiorf 12 and one reason for the discrepancy might be the
different extensions of DFT to systems with a fractional number
of electronsi!

In this brief report, we show that for a large molecular system,
DFT Koopmans’ theorem seems to be

the total energy difference between tkkeand (N — 1)-electron &
systems is I((N)=E(N—1)— E(N) = —¢\ + >C 4)
1
E(N) — E(N—1)= [ e(n) dn (1) whereC is the capacitance of the molecular system aimthe

elementary charge. Hence the ionization energy of the system
whereen(n) is theNth KS level whose occupation numbemis  equals the negative of the HOMO energlus the classical
and 0< n =< 1. Accordingly Janak claimed that for extended Coulomb electrostatic energy needed to remove an electron from
systems the system. Janak’s extended systems then have a large
capacitance so th&/2C < |ey|. Moreover, it is shown that
I(N) = E(N — 1) — E(N) = —y ) the added term in eq 3 by Harris and Ballone approximately
equalse?/2C. In addition, if we eliminate the paramet@rfrom
eg 4, then equivalently the ionization energy is the arithmetic
average of the HOMO energy of tiNeelectron system and the
lowest unoccupied molecular orbital (LUMO) energy of the (
— 1)-electron system. DFT calculation results of a fuller€gg
a finite (6, 0) single-walled carbon nanotube (SWCNIg,
and a finite (6, 0) boron nitride (BN) nanotuli&gNsg are
presented, which confirms this DFT Koopmans’ theorem. On
the other hand, because we mainly consider systems with an
« Corresponding author, E-mail: jluo@fudan.edu.cn integer number of electrons, the different extensions of DFT to
tFudan University. ' R systems with a fractional number of electrons and related debate
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wherel(N) and ey are the ionization energy and the highest
occupied molecular orbital (HOMO) level of thd-electron
system. This is becaugg(n) only changes infinitesimally when

n varies from 0 to 1, corresponding to th& (— 1)- and
N-electron systems, respectively. Hence in DFT, Koopmans’
theorem holds for HOMO of an extended system. Later Harris
and Balloné& gave a further consideration of the functiag(n)

and found that the more accurate DFT Koopmans’ theorem
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In a separate papét,t is proved according to DFT that the TABLE 1: Calculated Total Energy E(N), lonization Energy

Coulomb potential variation in a large molecular system is :\gNE)Ie_ctFo(rl?IS_y slt)em %Skﬂg%wgggnergfyt;g (()'Lthe
¢ _
approximately homogeneous in space if there is a small changel) Electron System, the Quantity— (gN + )/, and the

of the electron number, from to N'. This property provides a  Quantity — ey + €2/2C, for a Fullerene Cqo Moleculer
natural definition of the capacitance of the system, that is,

E(N - 1) o

E(N) — E(N) €N €} —(en+ €)/ /2C

e () Eo(f) ., (N—N¢E N V) @) @) V) 2@V (@V)
Ame,|T — T | f 4re )T —F| ~ C 355 —62088.334 23.765-22.150 —25321  23.736  23.777
(5) 356 —62108.563 20.229-18.698 —21.851 20275  20.318

357 —62125.664 17.101-15.557 —18.698  17.128  17.170
. i 358 —62139.648 13.984—12.427 —15.557  13.992  14.033
where p(r) and p'(r) are the electron densities of the and 555 5150655 10%877 ~9.310 12427 10869  10.910
N'-electron systems, respectively. Within this approximation, 360 —62158.306  7.781 —6.204 —9.310 7757 7797
it is further proved that the DFT total energy difference between 361 —62161.286  2.980 —1.476 —4.551 3.014 3.057
i 362 —62161.222 —0.064  1.587 —1.476 —0.056 —0.014
the two systems is 363 —62158.125 —3.096  4.637 1587 —3.112 —3.071
364 —62151.766 —6.359  7.841  4.807 —6.324 —6.282

N (N — N)2e2 365 —62142.404 —9.362 10.862  7.841 —9.352 —9.310
; g+—— (N>N) 366 —62130.050 —12.354 13.872 10.862 —12.367 —12.328
E(N') — E(N) = i=NT1 2C 22 2N is the electron number, aidl= 360 corresponds to the neutral
N (N—-N)e system.
-y ety NN
i=fr1 2C TABLE 2: Calculated Total Energy E(N), lonization Energy
(6) I(N) = E(N — 1) — E(N), HOMO Energy ey of the
. ) . . N-Electron System, LUMO Energy ¢, of the (N — 1)-
and all the KS levels shift almost identically, that is, Electron System, the Quantity— (en i ey)/2, and the
, Quantity — ey + €%/2C, for a (6, 0) SWCNT Cgg?
: (N"— N)e E(N-1 —ent
€T§=¢ ) E(N) SE(N)) o d  —(entey2 €2c
N (eV) (eV) (eV) (eV) (eV) (eV)

wheree; ande; are theith KS levels of theN- andN'-electron 568 733222.282 %4.334 728.227 722.42122 %4.360 34.340
systems, respectively. For a quantum dot (QD), eq 6 is actually 270 “00282-255 10000 719957 IS0 5Rle ey

the constant interaction (Cl) modélForN' =N — 1, eq 6 572 —99380.931 16.069 —14.874 —17.263  16.069  16.102

leads to eq 4. If we designate tiNth KS level of the N — 573 —99394.540 13.609 —12.546 —14.780  13.663  13.722
. i i 574 —99405.952 11.413 —10.261 —12.545  11.403  11.431
1& electron §yste|m a;ﬁ, accc:jrdllntg) to eq 7, the capacitance of 575 —99414903 B.950 —7.980 —10.143 5062 5105
the system Is related e andey by 576 —99421.549  6.646 —5.456 —7.980 6.718 6.741
577 —99425.646  4.097 —3.247 —5.282 4.265 4.294
e 578 —99427.373  1.726 —0.595 —3.247 1.921 1.960
ENT EN= —~ (8) 579 —99426.664 —0.709  1.770 —0.404 —0.683 —0.611
c 580 —99423.753 —2.911 4031 1798 —2915 —2.876
) ) 581 —99418.385 —5.367 6.614 4203 -5.409 —5.376
Equation 4 can then be written as 582 —99410.832 —7.553 8.660  6.614 —7.637 —7.598
583 —99401.110 —9.723  10.891 8.746 —9.819 —9.739
I((N)=E(N—1)— E(N) = — l'(gN 4+ 6;\‘) 9) aN is the electron number, aldl= 576 corresponds to the neutral
2 system.
It also can be provéd that in a large molecular system, to the exchange-correlation enerfyand the spin-unrestricted
approximately single-electron wave functions. The atomic structure ofGkge
was determined according to experimental data; that is, the
el (T 20e(p(T)) ¢ single- and double-bond lengths were chosen to be 1.45 and

7 dr' + [y ———= -C (10) 1.40 A, respectively? Our calculations gave the removal energy
o of the electron from the HOMO of the neutr@k, to be 7.78
eV, in good agreement with the experimental photoelectron
spectrum results of both solid- and gas-phase fulleféfelhe
structure optimization calculations led to the neutral finite-length

f 4rre|T —

Multiplying eq 10 by|yn(T)|? and then calculating the integra-
tion with respect t@, one gets

ezw, (T)|2|l/, (~')|2 (6, 0) SWCNT with C-C bond lengths ranging from 1.404 to
If N N = dr dP + 1.449 A, and the neutral finite-length (6, 0) BN nanotube with
4|7 — T'] B—N bond lengths ranging from 1.436 to 1.489 A, in agreement

e ) uxc(p( )) S with the generally adopted deta?3
SO CfWN( )2 d =C (11) Tables 13 list the calculated total enerd§(N), ionization
energyl(N) = E(N — 1) — E(N), HOMO energyey of the
because |yn(F)|? df = 1. Hence egs 3 and 4 are the same for N-electron system, LUMO energy, of the (N — 1)-electron

large molecular systems. system, the quantity-(en + €)/2, and the quantity-ey + €/
By using DFT based DMol3 codé;'”we calculated the total ~ 2C for the Cso molecule, the SWCNT, and the BN nanotube,
energies and KS levels of a fullere@gy molecule, a finite (6, respectively. It is shown th&¢N) > —ey and there are relatively

0) SWCNT containing 96 carbon atoms, and a finite (6, 0) BN large deviations between the ionization energy and the negative
nanotube containing 48 boron atoms and 48 nitrogen atoms.of the HOMO energy. Only after the Coulomb electrostatic
All the electrons were included in the calculations, and we energye¥2C is added to the negative of the HOMO energy
adopted the double numerical plus polarization (DNP) atomic does the sum of the two approximately equal the ionization
orbital basis set, the PBE general gradient approximation (GGA) energy.
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TABLE 3: Calculated Total Energy E(N), lonization Energy 120 _
I(N) = E(N — 1) — E(N), HOMO Energy ey of the ol @ ®
N-Electron System, LUMO Energy ¢ of the (N — 1)- Fullerene Ceo Fullerene Ceo
Electron System, the Quantity—(ex + €.)/2, and the N=360

]
2 o
S ©

N=359

n
=]

: % 801 N=360 %1 N'=361
Quan“ty —en T e2/2C, for a (6, O) BN Nanotube B4gNag? 2 Mean=3.185 eV 2 100 Mean=3.161 eV
£ 604 Total Count=359 < 80 Total Count=360
EEN —1) ’ B ’ —en g g > otal Coun
E(N) E(N) en €N (ent+€)/2 €42C 2 40 2

N (eV) (eV) (eV) (eV) (eV) (eV) R 3 40

569 —103893.294 23.862-22.657 —24.942 23.800 23.828 |‘||—| H N 2 = |‘| |‘|

570 —103914.803  21.509-20.309 —22.657 ~ 21.483  21.497 O 5k 5 s o als
571 —103933.922  19.119-17.939 —20.309 19.124 19.130 KS Level Shift eV} KS Level Shit (o)
572 —103950.629 16.708-15.554 —17.939 16.747 16.747 160 ) 160

573 —103964.910  14.281-13.149 —15.550 14.350 14.341 0] @

574 —103976.743  11.833-10.720 —13.149 11.935 11.911 » 120] SWONT Cos o 91 SWONT cos

575 —103986.093  9.349 —8.254 —10.720 9.487 9.441 2 ol N 2120 ',3;27757

576 —103992.907  6.814 —5.725 —8.254 6.990 6.903 - T 569 o 2 1907 Neanio 003 ev

577 —103997.084 4177 —2.901 —5.575 4.238 4.067 é 80 Total Cdunt=575 é 80 Total Count=576

578 —103998.527  1.443 —0.282 —2.901 1.592 1.436 g o g 60

579 —103997.412 —1.116  2.156 —0.282 —0.937 —1.010 £ a0 E .

580 —103993.851 —3.561  4.523 2.156 —3.340 —3.385 Z z

581 —103987.903 —5.948  7.011 4.785 -5.898 —5.884 10 0 .
582 —103979.633 —8.269  9.212  7.011 -8.112 —8.105 0= VIR 7, 07T VAR Ts
583 —103969.102—-10.531 11.762  9.588 —10.675 —10.676 KS Lovel Shift (&V) KS Level Shift &)

584 —103956.390—-12.713 13.824 11.762 —12.793 —12.779

aN is the electron number, arid= 576 corresponds to the neutral

(e) 40
BN Nanotube B48N48 35
N=575

U]
BN Nanotube B48N48
N=576

system. ﬁ 40 N'=576 ﬁ 30 N=577
a 30 ¥§§T2iff{’i§¥5 % % Mean2332 ey

Another approximate result along with eqsBis that KS % 520 Tortcouni=07e
orbitals will not change when the electron number changes from 3 2 g5
N to N'.1* On the analogy of HF theory and from the single- 5 10 S0
electron point of view, this may correspond to the fact that when 8
an electron is removed from the system, there is no relaxation ~ °7%; 24 26 T 0T s 24 26 28
of the remaining electrons. We note that the nonrelaxation of KS Level Shift (eV) KS Level Shift (V)

the smgle-electr(_)n orbitals leads to exactly_ identical Sh'ft_s of Figure 1. Histograms of the shift of occupied KS levels for a fullerene
all KS levels, as is expressed by eq 7. Thus in real calculations, ¢ [(a), (b)], a (6, 0) SWCNTCss [(c), (d)], and a (6, 0) BN nanotube
the orbital relaxation can be appraised by the nonuniformity of B,gNug [(e), (f)], when their electron number increases by 1, fidro
the KS level shift. Figure 1 illustrates the distribution of the N =N+ 1.

KS level shift for theCgo, the SWCNT, and the BN nan_otube TABLE 4: Minimum, Maximum, Average, and Range of the

when their ele(?tro.n ”Pmbef increases. by 1} fiirto N' = Shift of All Occupied KS Levels for a Fullerene Cso When
+ 1, and the distribution ranges are listed in Tables4For Its Electron Number Increases by 1, fromNto N' = N + 1

the Cgo, this range is as small as about 0.1 eV. For the BN
nanotube, the range is larger. The relatively large dispersion of

min(e; —e) mMaxE —€) € —¢ MmMax—min

the KS level shift may be due to two facts: The first is the N (eV) (eV) (eV) (eV)
different valence electron affinity of boron and nitrogen atoms, 354 355 3.170 3.282 3.254 0.112
and the second is the lower symmetry of the BN nanotube. In ggg ggg’ giii gggz gggg 8112
both cases the electron relaxation is more pronounced. Never- 358 3129 3242 3212 0113
theless, despite the orbital relaxation, eq 4 still approximately zc5g 359 3117 3928 3199 0.111
holds if we take the quantityZIC as the average value of the 359 360 3.105 3.216 3.185 0.111
KS level shift. For all the three systems, this quantity in Tables 360 361 3.085 3.192 3.161 0.107
1-3 is obtained as the average shift of the occupied KS levels. 361 362 3.063 3.179 3.147 0.116
Besides, eq 9 also holds. This may be related to the fact that 362 363 3.050 3.166 3.133 0.116
the large dispersion of the KS level shift is due to the KS orbitals 363 364 3.043 3.151 3.118 0.108
which have much lower energies. 364 365 3.021 3.138 3.104 0.117
365 366 3.010 3.125 3.089 0.115

Figure 2 illustrates statistically the variation of the molecular
electrostatic potential of th€gp, the SWCNT, and the BN
nanotube when their electron number increases by one,ffom Let Ap(f) = p'(F) — p(F), eq 5 gives the classical Coulomb
toN'= N+ 1. The molecular electrostatic potential in the region potential energy
enclosed by the 0.002 au (1 &u6.7482 e/R) electron density
isosurface was calculated at grid points spaced by 0.1 A in each _ _ ” 5
of the three directions and the histogram of the potential lff &Ap(T) Ap(T") o7 dF’ = (N = N)e (12)
variation is plotted in Figure 2. Compared with the shift of KS 2 dre,|T —T| 2C
levels, the potential variation is less uniform. However, the
average value of the potential variation coincides well with that
of the KS level shift and this average value can also be used toThe capacitance also leads to the separation of the contributions
obtain the quantitye?/C. of the classical Coulomb energy and the quantum mechanics
Although it only approximately holds, eq 5 provides a energy level to the ionization energy, as demonstrated by eq 4.
capacitance definition that conforms with the classical notion. This capacitance definition is different from that given by lafrate
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TABLE 5: Minimum, Maximum, Average, and Range of the
Shift of All Occupied KS Levels for a (6, 0) SWCNT Cgg
When lIts Electron Number Increases by 1, fromN to N' =
N+1

r__
€€

min(e; —e))  max; — e) max— min
N N (eV) (eV) (eV) (eV)

568 569 2.035 2.222 2.145 0.187
569 570 2.686 2.869 2.787 0.183
570 571 2.310 2.591 2.487 0.281
571 572 2.359 2.505 2.455 0.146
572 573 2.281 2.664 2.352 0.383
573 574 2.226 2.604 2.340 0.378
574 575 2.098 2.315 2.250 0.217
575 576 2.392 2.655 2.569 0.263
576 577 2.000 2.146 2.093 0.146
577 578 2.596 2.768 2.730 0.172
578 579 2.226 2.496 2.318 0.270
579 580 2.233 2.458 2.310 0.225
580 581 2.393 2.642 2.476 0.249
581 582 2.044 2.185 2.124 0.141
582 583 2.084 2.865 2.305 0.781

TABLE 6: Minimum, Maximum, Average, and Range of the
Shift of All Occupied KS Levels for a (6, 0) BN Nanotube
B4sN4g When Its Electron Number Increases by 1, fromN to
N'=N+1

r_
€ T

min(e; —e))  max; — €) max— min
N N (ev) (eVv) (eVv) (eV)

568 569 2.162 2.704 2.342 0.542
569 570 2.222 2.625 2.375 0.403
570 571 2.208 2.600 2.382 0.392
571 572 2.262 2.585 2.385 0.323
572 573 2.247 2.576 2.384 0.329
573 574 2.276 2.557 2.381 0.281
574 575 2.270 2.5632 2.373 0.262
575 576 2.197 2.620 2.355 0.423
576 677 2.134 2.775 2.332 0.641
577 578 2.158 2.713 2.308 0.555
578 579 2.168 2.508 2.293 0.340
579 580 2.160 2.459 2.277 0.299
580 581 2.142 2.374 2.254 0.232
581 582 2.107 2.414 2.214 0.307
582 583 2.068 2.385 2172 0.317
583 584 1.979 2.613 2.090 0.634

et al?*in terms of chemical potentials for atomic-sized structures

through the equation

e2

C(N)

= u(N+ 1) — u(N) = E(N + 1) — 2E(N) + E(N — 1)
(13)

whereu(N) = E(N) — E(N — 1) is the chemical potential of

the N-electron system. lafrate et al. also mentioned that

according to eq 13 and calculation results,

€ _
C(N)
whereA(N) = E(N) — E(N + 1) is the electron affinity of the

system andBy is nearly a constarff On the other hand,
according to eq 6, our definition leads to

I(N) — A(N) = €y — ey T By (14)

ANN) = —¢y4q — % (15)
and
I(N) = AN) = €yyq — ey T 92 (16)

C

Luo et al.

(a)
Fullerene Ceo

(b)
Fullerene Céo

N=359 30000] N=360
40000{ =350 N-360
Mean=3.090 eV 25000
£ 300001  Total Count=564374 £ 20000] Total Count=570840
3 Q
8

mean=3.069 eV

70000 80000

(c) (d)
600001  SWCNT Cos SWCNT Cos
N=575 50000 N=576
50000 N'=576 N'=577
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Figure 2. Histograms of the variation of molecular electrostatic
potential for a fullereneéCq [(a), (b)], a (6, 0) SWCNTCy [(c), (d)],
and a (6, 0) BN nanotubBsgNas [(e), (f)], when their electron number
increases by 1, frohl to N' = N + 1. The electrostatic potential was
calculated in the region enclosed by the 0.002 au electron density
isosurface and at grid points spaced by 0.1 A in each of the three
directions.

Thus the constar, now has its physical meanirigy = e?/C
by the capacitance definition given in this report. The quantity
€?/C(N) of lafrate et al., however, is in fact the second difference
of the total energy, which has already been defined as the
addition energy of a QB Results may seem clearer and simpler
if the capacitance definition given by eq 5 is adopted for a large
molecular system. Besides, although the numerical integration
is time-consuming, eq 12 provides another way to calculate the
quantity €?/C. Tentative calculations of th€go, the SWCNT,
and the BN nanotube demonstrated #4€ obtained from eq
12 also makes eq 4 hold well.

For an open-shelN-electron system, there is the result in
LDA and GGA tha??®

_ 1
€

v == 500N + AN

(17)

This equation can be derived from eq 6, under the assumption
that the capacitance of the system is a constant. In fact, eq 6
leads to eqgs 4 and 15. For an open-shell systam,= ¢y, and
adding egs 4 and 15 together leads to eq 17. Nevertheless, eq
17 is not a general conclusion because it may not hold for a
closed-shell structure. For instance, the 360 electrons of the
neutralCgso molecule constitute a closed-shell system. The orbital
361 belongs to th&, irreducible representation of the symmetry
grouply, different from theH, representation of the orbital 360.
Thusen+1 > ey and eq 17 does not hold. In faets; = —4.551

eV, €30 = —6.204 eV, and-[I(360) + A(360)]/2= —5.381
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eV (Table 1). The same is true for the closed-shell SWCNT  Acknowledgment. J.L. is grateful to Professor Xun Wang
and closed-shell BN nanotube, only the energy-level intervals for his assistance. This work was supported by the National
in these systems are smaller than those in @gg and the Natural Science Foundation of China, the Ministry of Science
difference betweery and —[I(N) + A(N)]/2 is also smaller. and Technology of China, and the Postdoctoral Science Founda-
Equation 17 can be a good approximation for large molecular tion of China.

systems with a low symmetry, where the energy-level intervals
are small, but may fail for systems with a high symmetry, where
the energy-level intervals are large.
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