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It is shown that in density functional theory (DFT), Koopmans’ theorem for a large molecular system can be
stated as follows: The ionization energy of the system equals the negative of the highest occupied molecular
orbital (HOMO) energy plus the Coulomb electrostatic energy of removing an electron from the system, or
equivalently, the ionization energy of anN-electron system is the negative of the arithmetic average of the
HOMO energy of this system and the lowest unoccupied molecular orbital (LUMO) energy of the (N -
1)-electron system. Relations between this DFT Koopmans’ theorem and its existing counterparts in the literature
are discussed. Some of the previous results are generalized and some are simplified. DFT calculation results
of a fullerene molecule, a finite single-walled carbon nanotube and a finite boron nitride nanotube are presented,
indicating that this Koopmans’ theorem approximately holds, even if the orbital relaxation is taken into
consideration.

In the Hartree-Fock (HF) method, Koopmans’ theorem1

provides a convenient way to estimate the ionization energy of
a molecular system: The energy needed to remove an electron
from a certain single-particle state approximately equals the
negative of the eigen-energy of that state, provided the corre-
sponding orbital is a canonical one and there is no state
relaxation of the remaining electrons. Because electronic
structure calculations based on Kohn-Sham (KS) density
functional theory (DFT)2,3 are more efficient and accurate, the
DFT version of Koopmans’ theorem naturally becomes an
interesting topic. Here one problem is that the single-electron
states in DFT and their energies are related to a fictitious
noninteracting electron system, hence the KS orbitals and levels
are sometimes believed to lack physical implications. Neverthe-
less, Janak4 proved that in DFT,∂E/∂ni ) εi, whereE is the
total energy corresponding to the arbitrary (not restricted to
integers) occupationni of KS orbitalψi with energyεi. Therefore
the total energy difference between theN- and (N - 1)-electron
systems is

whereεN(n) is theNth KS level whose occupation number isn,
and 0e n e 1. Accordingly Janak claimed that for extended
systems

where I(N) and εN are the ionization energy and the highest
occupied molecular orbital (HOMO) level of theN-electron
system. This is becauseεN(n) only changes infinitesimally when
n varies from 0 to 1, corresponding to the (N - 1)- and
N-electron systems, respectively. Hence in DFT, Koopmans’
theorem holds for HOMO of an extended system. Later Harris
and Ballone5 gave a further consideration of the functionεN(n)
and found that the more accurate DFT Koopmans’ theorem

within local density approximation (LDA) is

whereψN(rb) is the Nth KS orbital, andµxc(F(rb)) is the LDA
exchange-correlation potential. On the other hand, there are
conclusions that eq 2 exactly holds for finite systems.6,7 The
DFT Koopmans’ theorem thus has been an issue open to
discussion,6-13 and one reason for the discrepancy might be the
different extensions of DFT to systems with a fractional number
of electrons.11

In this brief report, we show that for a large molecular system,
DFT Koopmans’ theorem seems to be

whereC is the capacitance of the molecular system ande is the
elementary charge. Hence the ionization energy of the system
equals the negative of the HOMO energyplus the classical
Coulomb electrostatic energy needed to remove an electron from
the system. Janak’s extended systems then have a large
capacitance so thate2/2C , |εN|. Moreover, it is shown that
the added term in eq 3 by Harris and Ballone approximately
equalse2/2C. In addition, if we eliminate the parameterC from
eq 4, then equivalently the ionization energy is the arithmetic
average of the HOMO energy of theN-electron system and the
lowest unoccupied molecular orbital (LUMO) energy of the (N
- 1)-electron system. DFT calculation results of a fullereneC60,
a finite (6, 0) single-walled carbon nanotube (SWCNT)C96,
and a finite (6, 0) boron nitride (BN) nanotubeB48N48 are
presented, which confirms this DFT Koopmans’ theorem. On
the other hand, because we mainly consider systems with an
integer number of electrons, the different extensions of DFT to
systems with a fractional number of electrons and related debate
are not addressed.
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In a separate paper,14 it is proved according to DFT that the
Coulomb potential variation in a large molecular system is
approximately homogeneous in space if there is a small change
of the electron number, fromN to N′. This property provides a
natural definition of the capacitance of the system, that is,

whereF(rb) and F′(rb) are the electron densities of theN- and
N′-electron systems, respectively. Within this approximation,
it is further proved that the DFT total energy difference between
the two systems is

and all the KS levels shift almost identically, that is,

whereεi andε′i are theith KS levels of theN- andN′-electron
systems, respectively. For a quantum dot (QD), eq 6 is actually
the constant interaction (CI) model.15 For N′ ) N - 1, eq 6
leads to eq 4. If we designate theNth KS level of the (N -
1)-electron system asε′N, according to eq 7, the capacitance of
the system is related toεN andε′N by

Equation 4 can then be written as

It also can be proved14 that in a large molecular system,
approximately

Multiplying eq 10 by|ψN(rb)|2 and then calculating the integra-
tion with respect torb, one gets

because∫ |ψN(rb)|2 drb ) 1. Hence eqs 3 and 4 are the same for
large molecular systems.

By using DFT based DMol3 code,16,17we calculated the total
energies and KS levels of a fullereneC60 molecule, a finite (6,
0) SWCNT containing 96 carbon atoms, and a finite (6, 0) BN
nanotube containing 48 boron atoms and 48 nitrogen atoms.
All the electrons were included in the calculations, and we
adopted the double numerical plus polarization (DNP) atomic
orbital basis set, the PBE general gradient approximation (GGA)

to the exchange-correlation energy,18 and the spin-unrestricted
single-electron wave functions. The atomic structure of theC60

was determined according to experimental data; that is, the
single- and double-bond lengths were chosen to be 1.45 and
1.40 Å, respectively.19 Our calculations gave the removal energy
of the electron from the HOMO of the neutralC60 to be 7.78
eV, in good agreement with the experimental photoelectron
spectrum results of both solid- and gas-phase fullerene.20,21The
structure optimization calculations led to the neutral finite-length
(6, 0) SWCNT with C-C bond lengths ranging from 1.404 to
1.449 Å, and the neutral finite-length (6, 0) BN nanotube with
B-N bond lengths ranging from 1.436 to 1.489 Å, in agreement
with the generally adopted data.22,23

Tables 1-3 list the calculated total energyE(N), ionization
energy I(N) ) E(N - 1) - E(N), HOMO energyεN of the
N-electron system, LUMO energyε′N of the (N - 1)-electron
system, the quantity-(εN + ε′N)/2, and the quantity-εN + e2/
2C for the C60 molecule, the SWCNT, and the BN nanotube,
respectively. It is shown thatI(N) > -εN and there are relatively
large deviations between the ionization energy and the negative
of the HOMO energy. Only after the Coulomb electrostatic
energye2/2C is added to the negative of the HOMO energy
does the sum of the two approximately equal the ionization
energy.

∫ e2F′( rb′)
4πε0| rb - rb′| drb′ - ∫ e2F( rb′)

4πε0| rb - rb′| drb′ )
(N′ - N)e2

C
(5)

E(N′) - E(N) ) { ∑
i)N+1

N′

εi +
(N′ - N)2e2

2C
(N′ > N)

- ∑
i)N′+1

N

εi +
(N - N′)2e2

2C
(N′ < N)

(6)

ε′i - εi )
(N′ - N)e2

C
(7)

ε′N - εN ) -e2

C
. (8)

I(N) ) E(N - 1) - E(N) ) - 1
2
(εN + ε′N) (9)

∫ e2|ψN( rb′)|2
4πε0| rb - rb′| drb′ + |ψN( rb)|2∂µxc(F( rb))

∂F
) e2

C
(10)

∫∫e2|ψN( rb)|2|ψN( rb′)|2
4πε0| rb - rb′| drb drb′ +

∫|ψN( rb)|4∂µxc(F( rb))

∂F
drb ) e2

C∫|ψN( rb)|2 drb ) e2

C
(11)

TABLE 1: Calculated Total Energy E(N), Ionization Energy
I (N) ) E(N - 1) - E(N), HOMO Energy EN of the
N-Electron System, LUMO Energy ε′N of the (N -
1)-Electron System, the Quantity- (EN + ε′N)/2, and the
Quantity - EN + e2/2C, for a Fullerene C60 Moleculea

N
E(N)
(eV)

E(N - 1)
- E(N)

(eV)
εN

(eV)
ε′N

(eV)
-(εN + ε′N)/

2 (eV)

-εN +
e2/2C
(eV)

355 -62088.334 23.765-22.150 -25.321 23.736 23.777
356 -62108.563 20.229-18.698 -21.851 20.275 20.318
357 -62125.664 17.101-15.557 -18.698 17.128 17.170
358 -62139.648 13.984-12.427 -15.557 13.992 14.033
359 -62150.525 10.877 -9.310 -12.427 10.869 10.910
360 -62158.306 7.781 -6.204 -9.310 7.757 7.797
361 -62161.286 2.980 -1.476 -4.551 3.014 3.057
362 -62161.222 -0.064 1.587 -1.476 -0.056 -0.014
363 -62158.125 -3.096 4.637 1.587 -3.112 -3.071
364 -62151.766 -6.359 7.841 4.807 -6.324 -6.282
365 -62142.404 -9.362 10.862 7.841 -9.352 -9.310
366 -62130.050 -12.354 13.872 10.862 -12.367 -12.328

a N is the electron number, andN ) 360 corresponds to the neutral
system.

TABLE 2: Calculated Total Energy E(N), Ionization Energy
I (N) ) E(N - 1) - E(N), HOMO Energy EN of the
N-Electron System, LUMO Energyε′N of the (N - 1)-
Electron System, the Quantity- (EN + ε′N)/2, and the
Quantity - EN + e2/2C, for a (6, 0) SWCNT C96

a

N
E(N)
(eV)

E(N - 1)
- E(N)

(eV)
εN

(eV)
ε′N

(eV)
-(εN + ε′N)/2

(eV)

-εN +
e2/2C
(eV)

569 -99324.582 24.344 -23.267 -25.452 24.360 24.340
570 -99346.316 21.735 -20.561 -23.267 21.914 21.955
571 -99364.862 18.545 -17.327 -19.771 18.549 18.571
572 -99380.931 16.069 -14.874 -17.263 16.069 16.102
573 -99394.540 13.609 -12.546 -14.780 13.663 13.722
574 -99405.952 11.413 -10.261 -12.545 11.403 11.431
575 -99414.903 8.950 -7.980 -10.143 9.062 9.105
576 -99421.549 6.646 -5.456 -7.980 6.718 6.741
577 -99425.646 4.097 -3.247 -5.282 4.265 4.294
578 -99427.373 1.726 -0.595 -3.247 1.921 1.960
579 -99426.664 -0.709 1.770 -0.404 -0.683 -0.611
580 -99423.753 -2.911 4.031 1.798 -2.915 -2.876
581 -99418.385 -5.367 6.614 4.203 -5.409 -5.376
582 -99410.832 -7.553 8.660 6.614 -7.637 -7.598
583 -99401.110 -9.723 10.891 8.746 -9.819 -9.739

a N is the electron number, andN ) 576 corresponds to the neutral
system.
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Another approximate result along with eqs 5-7 is that KS
orbitals will not change when the electron number changes from
N to N′.14 On the analogy of HF theory and from the single-
electron point of view, this may correspond to the fact that when
an electron is removed from the system, there is no relaxation
of the remaining electrons. We note that the nonrelaxation of
the single-electron orbitals leads to exactly identical shifts of
all KS levels, as is expressed by eq 7. Thus in real calculations,
the orbital relaxation can be appraised by the nonuniformity of
the KS level shift. Figure 1 illustrates the distribution of the
KS level shift for theC60, the SWCNT, and the BN nanotube
when their electron number increases by 1, fromN to N′ ) N
+ 1, and the distribution ranges are listed in Tables 4-6. For
the C60, this range is as small as about 0.1 eV. For the BN
nanotube, the range is larger. The relatively large dispersion of
the KS level shift may be due to two facts: The first is the
different valence electron affinity of boron and nitrogen atoms,
and the second is the lower symmetry of the BN nanotube. In
both cases the electron relaxation is more pronounced. Never-
theless, despite the orbital relaxation, eq 4 still approximately
holds if we take the quantitye2/C as the average value of the
KS level shift. For all the three systems, this quantity in Tables
1-3 is obtained as the average shift of the occupied KS levels.
Besides, eq 9 also holds. This may be related to the fact that
the large dispersion of the KS level shift is due to the KS orbitals
which have much lower energies.

Figure 2 illustrates statistically the variation of the molecular
electrostatic potential of theC60, the SWCNT, and the BN
nanotube when their electron number increases by one, fromN
to N′ ) N + 1. The molecular electrostatic potential in the region
enclosed by the 0.002 au (1 au) 6.7482 e/Å3) electron density
isosurface was calculated at grid points spaced by 0.1 Å in each
of the three directions and the histogram of the potential
variation is plotted in Figure 2. Compared with the shift of KS
levels, the potential variation is less uniform. However, the
average value of the potential variation coincides well with that
of the KS level shift and this average value can also be used to
obtain the quantitye2/C.

Although it only approximately holds, eq 5 provides a
capacitance definition that conforms with the classical notion.

Let ∆F(rb) ) F′(rb) - F(rb), eq 5 gives the classical Coulomb
potential energy

The capacitance also leads to the separation of the contributions
of the classical Coulomb energy and the quantum mechanics
energy level to the ionization energy, as demonstrated by eq 4.
This capacitance definition is different from that given by Iafrate

TABLE 3: Calculated Total Energy E(N), Ionization Energy
I (N) ) E(N - 1) - E(N), HOMO Energy EN of the
N-Electron System, LUMO Energyε′N of the (N - 1)-
Electron System, the Quantity-(EN + ε′N)/2, and the
Quantity -EN + e2/2C, for a (6, 0) BN NanotubeB48N48

a

N
E(N)
(eV)

E(N - 1)
- E(N)

(eV)
εN

(eV)
ε′N

(eV)
-(εN + ε′N)/2

(eV)

-εN +
e2/2C
(eV)

569 -103893.294 23.862-22.657 -24.942 23.800 23.828
570 -103914.803 21.509-20.309 -22.657 21.483 21.497
571 -103933.922 19.119-17.939 -20.309 19.124 19.130
572 -103950.629 16.708-15.554 -17.939 16.747 16.747
573 -103964.910 14.281-13.149 -15.550 14.350 14.341
574 -103976.743 11.833-10.720 -13.149 11.935 11.911
575 -103986.093 9.349 -8.254 -10.720 9.487 9.441
576 -103992.907 6.814 -5.725 -8.254 6.990 6.903
577 -103997.084 4.177 -2.901 -5.575 4.238 4.067
578 -103998.527 1.443 -0.282 -2.901 1.592 1.436
579 -103997.412 -1.116 2.156 -0.282 -0.937 -1.010
580 -103993.851 -3.561 4.523 2.156 -3.340 -3.385
581 -103987.903 -5.948 7.011 4.785 -5.898 -5.884
582 -103979.633 -8.269 9.212 7.011 -8.112 -8.105
583 -103969.102-10.531 11.762 9.588 -10.675 -10.676
584 -103956.390-12.713 13.824 11.762 -12.793 -12.779

a N is the electron number, andN ) 576 corresponds to the neutral
system.

Figure 1. Histograms of the shift of occupied KS levels for a fullerene
C60 [(a), (b)], a (6, 0) SWCNTC96 [(c), (d)], and a (6, 0) BN nanotube
B48N48 [(e), (f)], when their electron number increases by 1, fromN to
N′ ) N + 1.

TABLE 4: Minimum, Maximum, Average, and Range of the
Shift of All Occupied KS Levels for a Fullerene C60 When
Its Electron Number Increases by 1, fromN to N′ ) N + 1

N N′
min(ε′i -εi)

(eV)
max(ε′i - εi)

(eV)
ε′i - εi
(eV)

max- min
(eV)

354 355 3.170 3.282 3.254 0.112
355 356 3.152 3.267 3.239 0.115
356 357 3.141 3.254 3.226 0.113
357 358 3.129 3.242 3.212 0.113
358 359 3.117 3.228 3.199 0.111
359 360 3.105 3.216 3.185 0.111
360 361 3.085 3.192 3.161 0.107
361 362 3.063 3.179 3.147 0.116
362 363 3.050 3.166 3.133 0.116
363 364 3.043 3.151 3.118 0.108
364 365 3.021 3.138 3.104 0.117
365 366 3.010 3.125 3.089 0.115

1
2∫∫ e2∆F( rb) ∆F( rb′)

4πε0| rb - rb′| drb drb′ )
(N′ - N)2e2

2C
(12)
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et al.24 in terms of chemical potentials for atomic-sized structures
through the equation

whereµ(N) ) E(N) - E(N - 1) is the chemical potential of
the N-electron system. Iafrate et al. also mentioned that
according to eq 13 and calculation results,

whereA(N) ) E(N) - E(N + 1) is the electron affinity of the
system andB0 is nearly a constant.24 On the other hand,
according to eq 6, our definition leads to

and

Thus the constantB0 now has its physical meaningB0 ) e2/C
by the capacitance definition given in this report. The quantity
e2/C(N) of Iafrate et al., however, is in fact the second difference
of the total energy, which has already been defined as the
addition energy of a QD.15 Results may seem clearer and simpler
if the capacitance definition given by eq 5 is adopted for a large
molecular system. Besides, although the numerical integration
is time-consuming, eq 12 provides another way to calculate the
quantitye2/C. Tentative calculations of theC60, the SWCNT,
and the BN nanotube demonstrated thate2/C obtained from eq
12 also makes eq 4 hold well.

For an open-shellN-electron system, there is the result in
LDA and GGA that9,25

This equation can be derived from eq 6, under the assumption
that the capacitance of the system is a constant. In fact, eq 6
leads to eqs 4 and 15. For an open-shell system,εN+1 ) εN, and
adding eqs 4 and 15 together leads to eq 17. Nevertheless, eq
17 is not a general conclusion because it may not hold for a
closed-shell structure. For instance, the 360 electrons of the
neutralC60 molecule constitute a closed-shell system. The orbital
361 belongs to theTu irreducible representation of the symmetry
groupIh, different from theHu representation of the orbital 360.
ThusεN+1 > εN and eq 17 does not hold. In fact,ε361 ) -4.551
eV, ε360 ) -6.204 eV, and-[I(360) + A(360)]/2 ) -5.381

TABLE 5: Minimum, Maximum, Average, and Range of the
Shift of All Occupied KS Levels for a (6, 0) SWCNTC96
When Its Electron Number Increases by 1, fromN to N′ )
N + 1

N N′
min(ε′i -εi)

(eV)
max(ε′i - εi)

(eV)
ε′i - εi
(eV)

max- min
(eV)

568 569 2.035 2.222 2.145 0.187
569 570 2.686 2.869 2.787 0.183
570 571 2.310 2.591 2.487 0.281
571 572 2.359 2.505 2.455 0.146
572 573 2.281 2.664 2.352 0.383
573 574 2.226 2.604 2.340 0.378
574 575 2.098 2.315 2.250 0.217
575 576 2.392 2.655 2.569 0.263
576 577 2.000 2.146 2.093 0.146
577 578 2.596 2.768 2.730 0.172
578 579 2.226 2.496 2.318 0.270
579 580 2.233 2.458 2.310 0.225
580 581 2.393 2.642 2.476 0.249
581 582 2.044 2.185 2.124 0.141
582 583 2.084 2.865 2.305 0.781

TABLE 6: Minimum, Maximum, Average, and Range of the
Shift of All Occupied KS Levels for a (6, 0) BN Nanotube
B48N48 When Its Electron Number Increases by 1, fromN to
N′ ) N + 1

N N′
min(ε′i -εi)

(eV)
max(ε′i - εi)

(eV)
ε′i - εi
(eV)

max- min
(eV)

568 569 2.162 2.704 2.342 0.542
569 570 2.222 2.625 2.375 0.403
570 571 2.208 2.600 2.382 0.392
571 572 2.262 2.585 2.385 0.323
572 573 2.247 2.576 2.384 0.329
573 574 2.276 2.557 2.381 0.281
574 575 2.270 2.532 2.373 0.262
575 576 2.197 2.620 2.355 0.423
576 677 2.134 2.775 2.332 0.641
577 578 2.158 2.713 2.308 0.555
578 579 2.168 2.508 2.293 0.340
579 580 2.160 2.459 2.277 0.299
580 581 2.142 2.374 2.254 0.232
581 582 2.107 2.414 2.214 0.307
582 583 2.068 2.385 2.172 0.317
583 584 1.979 2.613 2.090 0.634

Figure 2. Histograms of the variation of molecular electrostatic
potential for a fullereneC60 [(a), (b)], a (6, 0) SWCNTC96 [(c), (d)],
and a (6, 0) BN nanotubeB48N48 [(e), (f)], when their electron number
increases by 1, fromN to N′ ) N + 1. The electrostatic potential was
calculated in the region enclosed by the 0.002 au electron density
isosurface and at grid points spaced by 0.1 Å in each of the three
directions.

εN ) - 1
2
[I(N) + A(N)] (17)

e2

C(N)
) µ(N + 1) - µ(N) ) E(N + 1) - 2E(N) + E(N - 1)

(13)

e2

C(N)
) I(N) - A(N) ) εN+1 - εN + B0 (14)

A(N) ) -εN+1 - e2

2C
(15)

I(N) - A(N) ) εN+1 - εN + e2

C
(16)
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eV (Table 1). The same is true for the closed-shell SWCNT
and closed-shell BN nanotube, only the energy-level intervals
in these systems are smaller than those in theC60, and the
difference betweenεN and -[I(N) + A(N)]/2 is also smaller.
Equation 17 can be a good approximation for large molecular
systems with a low symmetry, where the energy-level intervals
are small, but may fail for systems with a high symmetry, where
the energy-level intervals are large.

If we chooseN to be the electron number of the neutral
system, eq 6 then gives the relative total energy of the system
with an excess charge (N′ - N)e. For a system with a not very
large but approximately constant capacitance, the total energy
variation is dominated by the term (N′ - N)2e2/2C, meaning
E(N′) varies approximately as a quadratic function ofN′. At
the same time, if the intervals of the KS levels around the
HOMO of the neutral system are small, that is,|εi+1 - εi| ,
e2/C, eq 7 indicates that approximately the HOMO level of the
charged system,ε′N′, varies linearly with respect toN′. It is
interesting that if the total energy is fitted as a quadratic function
of the electron number, then the ionization energy calculated
from this function may approximately coincide with the negative
of the HOMO level. If the number of excess electrons is small,
the fitted quadratic total energy function may lead to ionization
energy that agrees very well with the negative of the HOMO
level calculated from the fitted linear function, and eq 2
seemingly holds.26,27 However, the quadratic fitting destroys
details of the total energy variation. The conclusion is that eqs
3, 4, and 9 should be the more exact DFT Koopmans’ theorem
for large molecular systems.

In summary, a more exact and simpler form of Koop-
mans’ theorem for large molecular systems within DFT is given
in this brief report. The relations between this Koopmans’
theorem and its existing counterparts in the literature are
discussed. Some of the previous results are generalized and some
are simplified. DFT calculations of a fullereneC60 molecule, a
finite SWCNT, and a finite BN nanotube verified this Koop-
mans’ theorem.
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